

MEMORANDUM

805 Dupont Street, Ste. #7, Bellingham, Washington 98225 Telephone: (360) 733-6100 • Facsimile: (360) 647-9061

- TO: Lummi Island Scenic Estates
- FROM: Eric Hull, EIT, and Brian Smith, PE, Wilson Engineering, LLC
- SUBJECT: Lummi Island Scenic Estates Community Club Water System Capacity Analysis
- JOB NO.: 2021-032
- DATE: September 17, 2022

The purpose of this memorandum is to analyze recent water production and demand data and summarize the current and projected needed capacity of the Lummi Island Scenic Estates Community Club (LISECC) water system. This analysis determines the following:

- Average day demand per Equivalent Residential Unit (ERU_{ADD})
- Maximum day demand per ERU (ERU_{MDD})
- Distribution System Leakage (DSL)
- Peak hour demand (PHD)
- Source capacity
- Source reliability
- Storage capacity
- Distribution capacity
- Capital Improvement Projects related to system capacity

The LISECC (System ID #43290W) is a Group A water system located on Lummi Island, in Whatcom County. The system consists of a single surface water source, Dickenson Lake, a surface water treatment plant (coagulation, rapid dual media filter, disinfection), two storage tanks, and a distribution system. A map of the distribution system is shown in Figure 1 (attached).

System Demands

Below is a graph of monthly water production for years 2016 to 2021. July and August are the most common months of peak production, with 2021 being an outlier. In 2021 LISECC experienced a significant distribution system leak which caused peak production to occur in June and a near peak production to occur in July. The significant leak was fixed in July 2021.

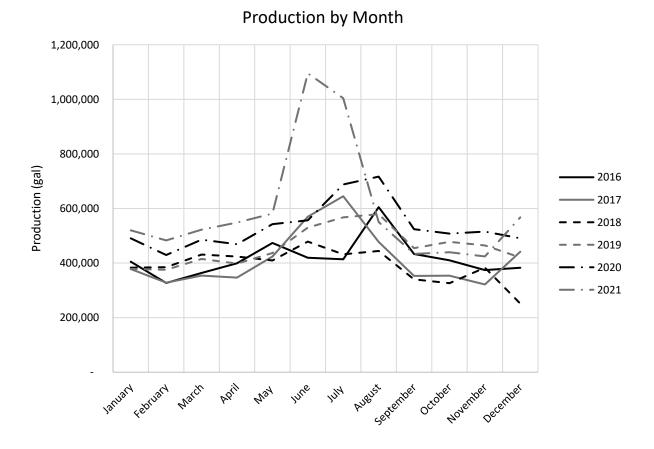


Table 1 summarizes the total annual production. During the data reporting period, 2016 to 2021, the maximum annual production occurred in 2021 with 7.17 million gallons produced. Production has steadily increased over the last four years from 4.69 million gallons in 2018 to 7.17 million gallons in 2021.

Table 1 – Annual Water Production				
Production (gal)				
5,007,500				
4,993,410				
4,688,700				
5,498,000				
6,417,500				
7,170,200				
5,629,218				
	Production (gal) 5,007,500 4,993,410 4,688,700 5,498,000 6,417,500 7,170,200			

Equivalent Residential Units (ERUs)

An equivalent residential unit (ERU) is system-specific unit of measure used to express the amount of water consumed by a typical full-time single-family residence (WAC 246-290-010). The LISECC consists of mostly single-family residential users, as well as a small number of RV sites and a couple community buildings. According to records provided by LISECC, the total number of connections as of December, 2021 was 222. The breakdown of accounts by category is shown in Table 2.

Quantity	Туре	Description
199	Residential	Single Family Residences
18	Recreational	Undeveloped lots with an active connection, often used for camping. Connections are available for future residential development.
5	Institutional	Community-owned connections

Table 2 – Connection Type and Quantity

All connections are metered, and water usage data was reviewed for a 6-year period from 2016 to 2021. This data was analyzed to determine the ERU_{ADD}, ERU_{MDD}, and peak hour demand (PHD).

- **ERU**_{ADD}: the approximation of the average daily demand of a typical full-time single-family residence
- **ERU**_{MDD}: the approximation of the maximum daily demand of a typical full-time single-family residence

ERU Average Day Demand (ERU ADD)

Because many LISECC residential properties are only occupied periodically, ERU_{ADD} cannot be calculated using the total number of residential connections as it would be for a system with near 100% occupancy. ERU_{ADD} was calculated by analyzing usage data and identifying which connections used more than 50 gallons per day on average throughout a given month – if a connection met this criterion, it was deemed to be an "active", or occupied, connection for that month. To calculate ERU_{ADD}, the monthly use of each active connection was summed over the year, and this total usage by active connections was divided by the number of active connections. A summary of the ERU_{ADD} calculations for each year is shown in Table 3.

Year	Total Number of Connections (No.)	Number of Residential Connections (No.)	Annual Average % Occupancy	Active Residential Connections (ERUs) ¹	ERU _{ADD} (gpd/ERU) ²			
2016	219	194	36%	69	118			
2017	219	194	35%	67	106			
2018	220	194	35%	68	107			
2019	221	196	36%	70	106			
2020	222	199	39%	78	108			
2021	222	199	39%	78	118			

Table 3 – ERU Average Day Demand (ERU_{ADD})

¹ Active connections is based on average usage of more than 50 gals per day

² ERU_{ADD} value does not include distribution system leakage

The average value for ERU_{ADD} for the last six years is 111 gpd/ERU. However, to remain conservative a value of **120 gpd/ERU** will be used for water use projection calculations. To reiterate, this usage per ERU is for an active, occupied connection.

Table 3 shows that the percentage of active residential connections out of the total number of residential connections varies somewhat year-to-year, but is typically approximately 35-40% occupancy. Using an ERU_{ADD} as calculated assumes 100% occupancy, unless occupancy is explicitly accounted for in the calculation.

ERU Maximum Day Demand (ERU_{MDD})

The maximum month average day demand (MMADD) method was used to calculate the ERU_{MDD}. The MMADD was calculated the same way as the above ERU_{ADD} except only for the maximum month of usage during the year. ERU_{MDD} is calculated by multiplying the MMADD by the peaking factor of 1.65 for systems serving fewer than 1,000 people, according to Section 3.4.1 of the Water System Design Manual.

Year	Month of Maximum Use	Active Residential Connections (ERUs) ¹	Max Month % Occupancy	Residential Max Month ADD, MMADD (gpd/ERU)	ERU _{MDD} (gpd/ERU) ²
2016	August	96	49%	155	255
2017	July	88	45%	131	216
2018	July	86	44%	137	227
2019	August	93	47%	119	196
2020	July	91	46%	125	207
2021	July	103	52%	130	214

Table 4 – ERU Maximum Day Demand (ERU_{MDD})

¹ Active connections are those that have an average usage of more than 50 gals per day during the given month ² ERU_{MDD} value does not include distribution system leakage

The average value for ERU_{MDD} for the last six years is 219 gpd/ERU. However, to remain conservative a value of **230 gpd/ERU** will be used for water use projection calculations.

As with average day demand calculations, the maximum day demand calculations in Table 4 shows maximum day demand for a fully occupied ERU. The number of active residential connections during the month of maximum use (Table 4) is higher than the annual average number of active connections (Table 3), but even during the month of maximum use, occupancy ranges from about 45% to 52%. Using an ERU_{MDD} as calculated assumes 100% occupancy, unless occupancy is explicitly accounted for in the calculation.

Additional Use and Build-out

There are five institutional buildings that had an average ERU_{ADD} of 16 gpd/Connection. This is 15% of the residential connection ERU_{ADD} of 111 gpd/ERU. Therefore, the sum of these five connections is equal to 0.75 ERUs. To be conservative, these five connections will be treated as 1 ERU.

Projected build-out, based on septic system permit limitations placed on new construction, is 275 residential connections for the whole LISECC community. LISECC requires that all new water connections have a county building permit, so a septic system permit is a prerequisite for a water connection. Existing Recreational connections typically have lower usage than a Residential connection, but each existing Recreational connection could be converted to a Residential connection if/when the property owner constructs a residence. The 275 Residential connection build-out number assumes all Recreational connections are eventually converted to Residential connections.

For projections, build-out ERUs will be the 275 residential ERUs and 1 ERU for the community connections, for a total of 276 ERUs. Water demand and system capacity projections, described below, will also include projected distribution system leakage and non-revenue water.

Distribution System Leakage & Non-Revenue Water

Production requirements and consumptive demand of a water system can differ due to volumetric loss through distribution system leakage (DSL) and non-revenue water (NRW). NRW is often un-metered authorized consumption used for hydrant/line flushing, filter backwashing, street cleaning, watering of parks and landscapes etc. For the LISECC system, NRW primarily consists of filter backwashing and a small amount of flushing. DSL is found by comparing the volume of water metered coming out of the water storage tanks to the volume of water metered by individual users. The difference is considered DSL. Non-revenue water (NRW) is calculated by subtracting the water sent to the distribution system out of the water storage tanks from the total volume of water produced at the water treatment plant, plus the known volume of distribution flushing water.

Annual distribution system leakage and non-revenue water (DSL & NRW) for the years 2016 to 2021 are listed in Table 5.

	Table 9 Distribution System Leakage a non revenue mater (Dol a mitt)						
Year	DSL (%)	NRW (%)	DSL + NRW (%)				
2016	25%	3%	29%				
2017	23%	14%	36%				
2018	33%	-5%	28%				
2019	34%	4%	38%				
2020	33%	10%	43%				
2021	41%	4%	44%				
Avg	31%	5%	36%				

Table 5 – Distribution System Leakage & Non-revenue Water (DSL & NRW)

DSL & NRW have an associated number of ERUs based both on ERU_{ADD} and ERU_{MDD} . The number of ERUs based on ERU_{ADD} is simply the number of ERUs multiplied by DSL + NRW as a fraction. For the build-out condition of 276 ERUs the number of ERUs associated with DSL and NRW based on ERU_{ADD} is simply 276 x 0.36 (average percentage) = 99 ERUs.

The number of ERUs based on ERU_{MDD} is discussed in the below section on peak hour demand.

These two different values for converting DSL+NRW into an ERU value depends on what demand value the calculation is using. If the calculation is based on ERU_{ADD}, the number of ERUs associated with DSL+NRW based on ERU_{ADD} will be used, and if the calculation is based on ERU_{MDD}, the number of ERUs associated with DSL+NRW based on ERU_{MDD} will be used.

Table 6 – DSL & NRW ERUs
Build-out (ERUs)
EBUIs associated with DSL & NBW based on E

ERUs associated with DSL & NRW based on ERU _{MDD}	52*	
ERUs associated with DSL & NRW based on ERUADD	99	

276

*Calculated in the section below

As tabulated above, the annual DSL & NRW equivalent is an additional 99 fully-occupied ERUs worth of water usage. This water system production is lost and no longer available for customer service. This reduces the water system's ability to serve customers. The Design Manual suggests taking significant action to decrease leakage when DSL is in excess of 10%. Recommendations for LISECC to decrease DSL are included in the Summary section of this memorandum.

Peak Hour Demand

The peak hour demand, for build-out condition, can be calculated from Equation 3-1 of the 2019 Water System Design (WSD) Manual:

Equation	3-1: Deter	min	e PHD		
	PHD = (E	RUм	_{IDD} /1440) [(C)(N) + F] + 18		
Where	PHD	=	Peak Hourly Demand, total system (gallons per minute)		
	с	=	Coefficient Associated with Ranges of ERUs		
	N	=	Number of ERUs based on MDD		
	F	=	Factor Associated with Ranges of ERUs		
ERU _{MDD} = Maximum Day Demand per ERU (gallons per day)					

Number of ERUs (N)	с	F
15 – 50	3.0	0
51 – 100	2.5	25
101 – 250	2.0	75
251 – 500	1.8	125
> 500	1.6	225

From Section 3.4.2 of the 2019 WSD manual:

 N is the number of ERUs supplied by all sources. DSL has an associated number of ERUs (see examples in Section 3.12 and Worksheet 4-1). Therefore, N includes DSL. "N" is the number of connections only if there is no distribution system leakage and all connections are single-family homes. An equation for "N" was found by following the example in the WSD Manual and is listed below.

$$N = ERUs + \left(\frac{ERU_{ADD} * ERUs * DSL_{Fraction}}{ERU_{MDD}}\right)$$

The DSL & NRW fraction used is 0.39, which corresponds to the average DSL & NRW from 2016 to 2021. See the Table 5 for annual average DSL & NRW values. Therefore, the whole number value to be used for determining PHD is calculated below.

$$N = 276 + \left(\frac{120 * 276 * 0.36}{230}\right)$$
$$N = 328$$

At build-out, DSL & NRW is equivalent to 52 ERUs, when calculated based on ERU_{MDD} .

System-wide PHD is calculated using N found above and values for C and F in the table from Section 3.4.2 of the 2019 WSD *manual*, above.

$$PHD = \left(\frac{230}{1440}\right) * \left[(1.8)(328) + 125\right] + 18$$

System – Wide PHD at build – out with 100% occupancy = 132 gpm

System Capacity

Water Rights Capacity

The LISECC holds one surface water right for Dickenson Lake, which is attached for reference and summarized in Table 7. Also attached to this memo is the Water Right Self-Assessment Form.

Table 7 – Summary	y of Water Rights

Water Right Document	Certificate Number	Storage Allowance	Instantaneous Withdrawal
Number		(Acre-Ft/Yr)	Allowance (cfs)
R1-*15782CCWRIS	10702B R1*15782 C C	49	2

Annual Water Rights

The LISECC surface water right has a specified storage allowance, but does not indicate an allowable annual use volume. This topic is discussed in the DOH-approved "LUMMI ISLAND SCENIC ESTATES WATER SYSTEM ANALYSIS" by Wilson Engineering dated 6-23-2014, page 5. That report indicates that:

"the annual quantity associated with the right is determined by the historical use under the right. The Lummi Island right is municipal, so connections and population are not a limitation on the extent of the right. This means that as long as the system is diligently growing, it can increase its water use. However... the growth of this system is very likely limited by the physical availability of water in the stream. If the water isn't there, obviously it can't be used, and additional connections can't be served."

The physical availability of water is addressed below in the section on Source Reliability.

Instantaneous Water Rights

The LISECC water right has an instantaneous withdrawal allowance of 2 cfs. Based on the ERU_{MDD} of 230 gpd/ERU (value does not include DSL or NRW) the instantaneous water right can supply the following number of ERUs at 100% occupancy:

$N_{water\ rights,instantaneous}$

 $=\frac{instantaneous withdrawal limit * 7.48 \frac{gal}{ft^3} * 60 s/min * 1440 min/day}{ERU_{MDD}}$ $=\frac{2\frac{ft^3}{s} * 7.48 \frac{gal}{ft^3} * 60 \frac{s}{min} * 1440 \frac{min}{day}}{230 gpd/ERU}$

= 5,619 *ERUs at* 100% *occupancy*

The LISECC water rights have an excess capacity of 5,291 ERUs from an instantaneous withdrawal limit perspective when build-out is 276 ERUs and DSL & NRW based on ERU_{MDD} have an associated 52 ERUs.

Reservoir/Storage Water Rights

The LISECC surface water right has an annual storage allowance of 49 acre-ft, or 15,970,000 gallons. Physical storage volume is discussed in the DOH-approved "LUMMI ISLAND SCENIC ESTATES WATER SYSTEM ANALYSIS" by Wilson Engineering dated 6-23-2014, page 6 and Appendix 2.

Source Reliability

Currently there is no data collection procedure in place to measure Dickenson lake's level or discharge throughout the year. We recommend that a weir be installed upstream of the 36" culvert that conveys the discharge out of Dickenson Lake, and a data collection plan be developed to collect and record data that will be useful in assessing source reliability.

We understand that a weir was installed years ago, but it was destroyed by a large storm. A replacement weir should be designed and constructed to withstand the maximum anticipated storm flow.

In addition to the weir, we recommend that a meter be installed on the pump back system to quantify the total volume of water pumped back into Dickenson Lake from seepage through the dam. This meter should be read with sufficient frequency to be able to determine any seasonal fluctuations in volume pumped – monthly reading is anticipated. This data will allow for quantification of the physical availability of water for the system. It is known that there is additional groundwater seepage through the dam that is not captured by the pump back system, but since this quantity of water cannot currently be used, it is okay that it is not quantified. If/when LISECC pursues measures to decrease seepage through the dam (liner, grout injections, etc.), that will be quantified by the weir and pump back meter as data is collected over time after any improvements.

Treatment System Capacity

The existing Keystone KeyFloc HRR 60 Water Filter has a maximum production rate of 67-gpm. It is recommended in Section 3.10.4 of the Water System Design Manual to assume a limit to operating a pumped source to less than 20 hrs/day, which allows for sufficient plant downtime for backwashing, filter-to-waste operations, and a safety factor.

Based on this rate at ERU_{MDD} the plant can supply:

$$=\frac{\left(67\ gpm*20\frac{hr}{day}*60\frac{min}{hr}\right)}{230\ gpd/ERU}$$

= 349 ERUs at 100% occupancy

The LISECC treatment system has an excess capacity of 21 ERUs when build-out is 276 ERUs and DSL & NRW ERUs, based on ERU_{MDD} have an associated 52 ERUs.

However, there have been times when treatment plant operations have been challenged, and a solution to achieve sufficient plant performance has been to decrease plant production rate, sometimes down as low as approximately 30 gpm. This is one of many reasons LISECC is planning to replace the treatment plant, and points to the urgency of needing to complete this replacement.

Storage Tank Capacity

LISECC has two storage tanks located at the top of Dogwood Terrace. Each tank has a capacity of 94,000 gals (20 ft dia. x 40 ft ht.) for a combined storage capacity of 188,000 gallons. Figure 4 reflects the storage requirements based on the number of ERU's, MDD, PHD, operational storage of 1.5 ft, equalizing storage, single net source production rate of 67 gpm, and dead storage.

Standby storage Criteria #1 column of Figure 4 reflects the minimum value of 200 gallons per ERU. Standby storage Criteria #2 column of Figure 4 reflects two times the ADD. The larger of the two values is used for standby storage.

In addition to the allotted storage volumes, the tanks need to remain sufficiently full to provide adequate contact time for disinfection. Documentation indicates that both tanks must maintain a minimum level in both tanks of 35.8 ft to ensure adequate contact time. If circumstances require the use of standby storage in the tanks, LISECC has adopted a practice of isolating one tank so that it is no longer being fed by the source and drawing down that tank during the circumstances necessitating use of standby storage. Because it is not being fed by the source, the tank has already provided sufficient contact time for the water in the tank, and the level can therefore be drawn down below the 35.8 ft. In this way, standby storage can be nested within contact time volume. This is reflected in Figure 4.

Figure 4 reflects that buildout could be achieved in approximately 2038 based on anticipated growth of the community. The maximum number of ERUs the storage tanks can support given existing

infrastructure is 340 ERUs where 54 are associated with DSL and NRW. The storage tanks have an excess capacity of 10 ERUs at a buildout of 276 ERUs with DSL and NRW, based on ERU_{MDD}.

Because the source treatment plant is slated for replacement, and as discussed later the likely recommended treatment capacity will be approximately 100 gallons per minute, that condition was analyzed and is shown in Figure 5. This shows that increasing source capacity to 100 gallons per minute increases the storage excess and allows for a larger safety factor or additional operational volume while providing capacity for the full build-out capacity of 276 ERUs with an additional 52 ERUs associated with DSL & NRW based on ERU_{MDD}.

Distribution System Capacity

Capacity of the distribution system is evaluated based on the ability to provide the PHD with a minimum service pressure of 30 psi, or the maximum daily demand concurrently with a fire flow rate while maintaining a minimum service pressure of 20 psi. Fire flow is not required for this system therefore PHD was analyzed as the worst-case scenario.

A hydraulic model was developed for the LISECC system in order to simulate the distribution system for full build-out at PHD (shown in Figure 1). Water use data from 2016 – 2021 and previous model demands were used to assign scaled demands to each of the junctions in the model.

The distribution analysis indicates that residual pressures are above the minimum 30-psi for all areas in the distribution system except for the area immediately adjacent to the tanks. Two junctions immediately adjacent to the tanks, J-01 and J-02, have a residual pressure of 21.96-psi and 20.16-psi respectively. A pressure map of the distribution system can be found in Figure 2 and all tables associated with the model inputs and outputs can be found in Figure 3.

The distribution system has capacity for at least build-out condition of 276 ERUs with an additional 52 ERUs associated with DSL & NRW based on ERU_{MDD} .

Summary

Table 8 summarizes the existing demand criteria and service connections. Table 9 shows the system capacity for each component of the LISECC water system. Both the treatment plant capacity and storage capacity are limiting factors, although the treatment plant capacity impacts the storage capacity via the equalizing storage component, so increasing treatment plant capacity decreases required equalizing storage, therefore increasing storage capacity despite there being no change in the physical storage volume. These tandem limiting components are quantified in Table 9 where capacities are shown both with the current treatment plant capacity of 67 gpm and the future treatment planned capacity of 100 gpm.

	Existing Water System Demand Data							
Average Day I	Average Day Demand 120 gpd/ERU							
Maximum Da	y Demand		230 gpd/ERU					
Peak Hour De	mand (at build-	out)	132 gpm (for 3	28 ERUs, which i	represents 276	6 ERUs of		
			usage and 52 E	RUs of DSL and I	NRW)			
	Existing Water System Service Connections and ERUs							
Connection Type	Connections	Equivalent Residential Units	Equivalent Residential Units w/DSL+NRW based on ERU _{ADD}	Equivalent Residential Units w/DSL+NRW based on ERU _{MDD}	Average Day Demand w/DSL+NR W, GPD, if 100% occupancy	Maximum Day Demand w/DSL+NR W, GPD, if 100% occupancy		
Residential	199	199	271	237	32,520	54,510		
Recreational	18	18	24	21	2,880	4,830		
Institutional	5	1	1	1	120	230		
Total	222	218	296	259	35,520	59,570		

Table 8 – LISECC Demand and Connection Summary

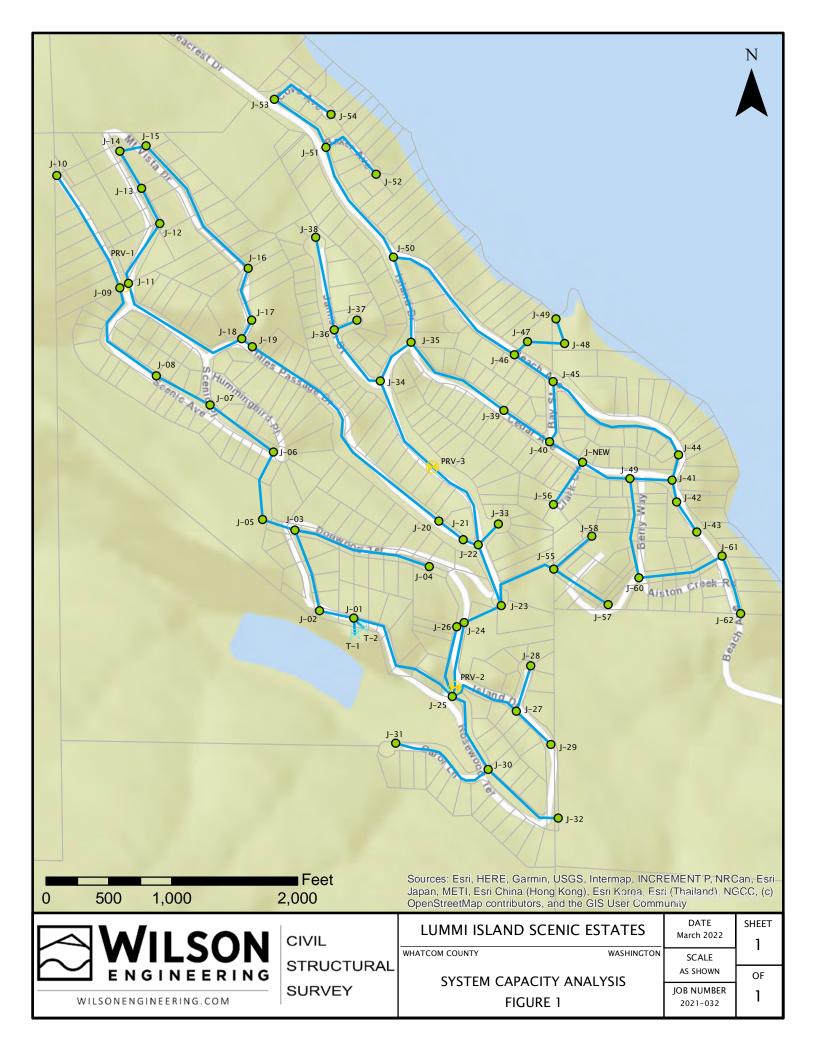
Table 9 – LISECC Capacity Summary

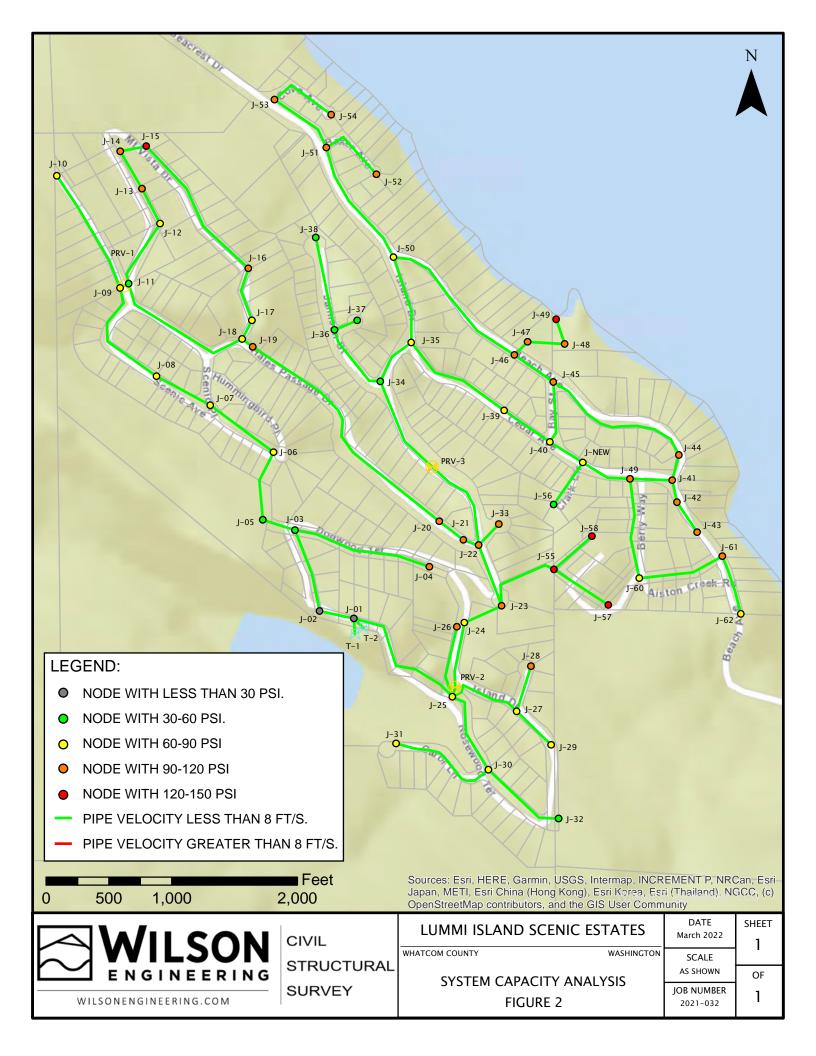
S	pecific System C	apacity in Equiv	alent Residenti	al Units	
Water System Component Capacity	Maximum Capacity w/Current WTP (ERUs)	Maximum Capacity w/New WTP (ERUs)	Current Excess Capacity (ERUs)	Build-out Excess Capacity: w/Existing WTP (ERUs)	Build-out Excess Capacity: w/New WTP (ERUs)
Water Rights: Instantaneous ¹	5619	5619	5360	5,291	5,291
Treatment System Capacity ¹	349	521	90	21	193
Storage-Related Capacity	340	455	81	12	127
Distribution System Capacity	>400	>400	>141	>72	>72

 $^{^1}$ Calculation uses ${\sf ERU}_{\sf MDD}$, therefore the ERUs associated with DSL used are based on ${\sf ERU}_{\sf MDD}$. Build-out is 328 ERUs with DSL & NRW.

Table 9 shows that the existing water system has a capacity to serve up to 340 ERUs, which exceeds anticipated build-out of the system of 328 ERUs (including DSL and NRW). After subtracting 54 ERUs that represent DSL and NRW ERUs, the existing system can serve 286 ERUs.

LISECC's current Water Facilities Inventory (WFI) shows that the system is approved for up to 250 connections, 5 of which are institutional connections. Based on the analysis in this memorandum, we recommend that this number of approved connections could be increased to **290** connections, with 5 of those connections being institutional connections that have a combined demand of 1 ERU, and 285 connections that could be allocated to full time single family residences. As described previously in this memorandum, the 20 approved recreational connections could be converted to full time single family residences at some point in the future.


Note that the recommended number of approved connections in the paragraph above does assume full functionality of the treatment plant at 67 gpm – given the recent history of sometimes needing to run the treatment plant at a lower production rate, LISECC has made it a priority to replace the treatment plant as soon as is feasible. Also note that data is not available to assess source reliability, and this analysis assumes source reliability (water available from the watershed) is not the limiting factor in the water system's capacity.


Based on our review of the data provided and the analyses described above, we recommend that the LISECC Board consider the following Capital Improvement Projects:

- 1. Investigate and replace any components causing distribution system leakage (DSL). Decreasing DSL will increase the system's ability to serve customers. There are numerous companies that specialize in detecting, pinpointing, and fixing distribution system leaks. Some of these include:
 - a. Utility Service Associates, <u>https://www.leakdetectionservice.com/</u>
 - b. Leak Masters, https://www.leakmasters.net/
 - c. American Leak Detection, <u>https://www.americanleakdetection.com/water-purveyors/</u>
 - d. Clearwater Leak Detection, <u>https://www.clearwaterleakdetection.com/water-leak-detection-seattle-wa/</u>
- 2. Water Source Reliability:
 - a. Install a weir on the Dickenson Lake outlet along with a meter on the pump back system to collect data to be able to determine water source reliability.
 - b. Commission a bathymetric survey of Dickenson Lake to determine current available storage volume. This may prompt LISECC to consider lake dredging or dam improvements to increase raw water storage volume up to the water right storage allowance. The cost of a bathymetric survey is estimated to be approximately \$5,000.
 - c. Once a. and b. are complete and data has been collected for a period of time, analyze source reliability to determine whether it has the potential to limit the water system's capacity.
- 3. As LISECC is already planning to do, replace the existing surface water filter plant with a surface water treatment system that can reliably provide approximately 100 gpm of treated water to provide an additional safety factor over the current capacity of 67 gpm, and to decrease required equalizing storage so that more of the existing storage is available for operational storage.

Attachments:

- Figure 1 Water System Map
- Figure 2 Pressure Map PHD
- Figure 3 Pipe and Junction Data
- Figure 4 LISECC Storage Table
- Figure 5 LISECC Storage Table with Source/Treatment improvement to 100 gpm
- Certificate of GW Right
- Water Right Self-Assessment Form

Tank Report

	ID	Flow (gpm)	Elevation (ft)	Head (ft)	% Full (%)	Level (ft)	Overflow Volume (ft3)	Total Overflow Volume (ft3)
1	T-1	-70.50	613.00	648.42	88.41	35.42	0.00	0.00
2	T-2	-70.49	613.00	648.42	88.41	35.42	0.00	0.00

Valve Report

	ID	Diameter (in)	Elevation (ft)	Upstream Pressure (psi)	Downstream Pressure (psi)	Flow (gpm)	Velocity (ft/s)	Headloss (ft)	Status	Setting
1	PRV-1	4.00	467.06	78.34	50.15	0.00	0.00	0.00	Closed	40.00
2	PRV-2	6.00	479.58	71.55	45.00	98.94	1.12	61.27	Active	45.00
3	PRV-3	4.00	266.10	136.83	30.00	74.34	1.90	246.55	Active	30.00

	CIVIL	LUMMI ISLAND SCENIC ESTATES	DATE March 2022	SHEET
WILSONENGINEERING.COM	STRUCTURAL SURVEY	WHATCOM COUNTY WASHINGTO SYSTEM CAPACITY ANALYSIS FIGURE 3	N SCALE AS SHOWN JOB NUMBER 2021-032	оғ 3

Junction Report

		Demand	Elevation	Head	Pressure] [10	Demand	Elevation	Head	Pressure
	ID	(gpm)	(ft)	(ft)	(psi)		1	ID	(gpm)	(ft)	(ft)	(psi)
1	J-01	1.03	597.59	648.28	21.96	36	; [J-36	4.61	243.75	334.02	39.11
2	J-02	1.03	601.69	648.21	20.16	37	' [J-37	0.00	247.92	334.02	37.30
3	J-03	4.10	549.31	648.09	42.80	38	3 [J-38	4.10	198.88	334.00	58.55
4	J-04	2.05	420.50	648.08	98.61	39) [J-39	7.18	140.64	333.42	83.53
5	J-05	0.00	569.39	648.06	34.09	40) [J-40	5.13	140.09	333.35	83.74
6	J-06	4.61	442.50	647.99	89.04	41		J-41	4.61	86.99	333.31	106.73
7	J-07	3.08	451.59	647.93	85.07	42	2 [J-42	0.00	85.85	333.31	107.22
8	J-08	5.13	480.63	647.89	72.47	43	3 [J-43	1.54	72.52	333.31	113.00
9	J-09	6.66	474.52	647.87	75.11	44	۱ [J-44	0.00	74.59	333.31	112.10
10	J-10	2.05	499.36	647.86	64.34	45	5 [J-45	4.10	110.64	333.35	96.50
11	J-11	0.00	463.86	582.79	51.53	46	\$ [J-46	3.08	106.31	333.35	98.38
12	J-12	0.00	393.12	582.79	82.18	47	' [J-47	0.00	89.91	333.35	105.48
13	J-13	0.00	366.74	582.79	93.61	48	3 [J-48	0.00	60.86	333.35	118.07
14	J-14	4.10	340.16	582.78	105.13	49) [J-49	0.51	20.68	333.35	135.48
15	J-15	0.00	282.74	582.78	130.01	50) [J-50	7.69	146.49	333.52	81.04
16	J-16	3.08	330.24	582.79	109.43	51		J-51	4.10	99.20	333.49	101.52
17	J-17	0.00	391.70	582.79	82.80	52	2 [J-52	2.56	72.36	333.49	113.15
18	J-18	5.64	377.06	582.79	89.15	53	3 [J-53	0.00	99.13	333.49	101.55
19	J-19	0.00	362.38	583.05	95.62	54	۱ [J-54	1.03	72.58	333.49	113.06
20	J-20	4.61	333.56	583.06	108.11	55	5 [J-55	0.00	255.64	583.19	141.93
21	J-21	0.00	331.48	583.07	109.01	56	\$ [J-56	0.51	203.82	333.33	56.12
22	J-22	0.51	331.18	583.08	109.15	57	7 [J-57	1.03	249.50	583.19	144.59
23	J-23	2.56	362.70	583.20	95.54	58		J-58	2.56	240.34	583.19	148.56
24	J-24	0.00	423.93	583.29	69.05	59) [J-59	3.08	113.08	333.31	95.43
25	J-25	3.08	487.03	644.73	68.33	60	L	J-60	3.08	186.62	333.29	63.55
26	J-26	1.54	434.96	644.72	90.89	61		J-61	2.56	66.93	333.28	115.41
27	J-27	2.05	442.34	644.72	87.69	62		J-62	2.05	136.06	333.28	85.45
28	J-28	0.51	399.38	644.72	106.30	63	3 [J-NEW	0.00	137.55	333.33	84.83
29	J-29	0.51	477.75	644.72	72.35							
30	J-30	1.03	503.10	644.71	61.36							
31	J-31	1.54	488.35	644.70	67.75							
32	J-32	2.05	509.39	644.70	58.63							
33	J-33	0.51	321.58	583.08	113.31							
34	J-34	5.13	228.80	334.08	45.62							
35	J-35	7.69	194.51	333.66	60.29							

	CIVIL	LUMMI ISLAND SCENIC EST	ATES	DATE March 2022	SHEET
	STRUCTURAL		washington	SCALE AS SHOWN	OF
WILSONENGINEERING.COM	SURVEY	FIGURE 3	515	JOB NUMBER 2021-032	3

Pipe Report

	ID	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity (ft/s)	Headloss (ft)	HL/1000 (ft/k-ft)	Status	Flow Reversal Count
36	P-42	J-36	J-38	228.48	3.00	140.00	4.10	0.19	0.02	0.07	Open	0
37	P-43	J-22	PRV-3	237.34	4.00	120.00	74.34	1.90	1.19	5.03	Open	0
38	P-44	PRV-3	J-34	248.57	4.00	120.00	74.34	1.90	1.25	5.03	Open	0
39	P-45	J-35	J-39	287.07	4.00	120.00	28.14	0.72	0.24	0.83	Open	0
40	P-46	J-39	J-40	134.24	4.00	120.00	20.96	0.54	0.06	0.48	Open	0
41	P-48	J-41	J-42	54.08	3.00	140.00	1.54	0.07	0.00	0.01	Open	0
42	P-49	J-42	J-43	88.03	3.00	140.00	1.54	0.07	0.00	0.01	Open	0
43	P-5	J-03	J-05	82.28	4.00	140.00	21.53	0.55	0.03	0.38	Open	0
44	P-50	J-44	J-41	63.41	3.00	120.00	4.00	0.18	0.01	0.09	Open	0
45	P-51	J-45	J-44	376.94	3.00	120.00	4.00	0.18	0.03	0.09	Open	0
46	P-52	J-40	J-45	150.28	3.00	120.00	2.40	0.11	0.01	0.04	Open	0
47	P-53	J-46	J-45	114.77	6.00	140.00	5.70	0.06	0.00	0.00	Open	0
48	P-54	J-46	J-47	45.13	6.00	140.00	0.51	0.01	0.00	0.00	Open	0
49	P-55	J-47	J-48	90.03	6.00	140.00	0.51	0.01	0.00	0.00	Open	0
50	P-56	J-48	J-49	63.12	2.00	100.00	0.51	0.05	0.00	0.02	Open	0
51	P-57	J-50	J-46	389.55	3.00	120.00	9.29	0.42	0.17	0.43	Open	0
52	P-58	J-35	J-50	213.90	4.00	120.00	24.67	0.63	0.14	0.65	Open	0
53	P-59	J-50	J-51	317.30	4.00	120.00	7.69	0.20	0.02	0.08	Open	0
54	P-6	J-05	J-06	172.23	4.00	140.00	21.53	0.55	0.07	0.38	Open	0
55	P-60	J-51	J-52	169.34	3.00	140.00	2.56	0.12	0.01	0.03	Open	0
56	P-61	J-51	J-53	176.02	4.00	140.00	1.03	0.03	0.00	0.00	Open	0
57	P-62	J-53	J-54	174.48	3.00	140.00	1.03	0.05	0.00	0.01	Open	0
58	P-63	J-23	J-55	193.65	3.00	140.00	3.59	0.16	0.01	0.06	Open	0
59	P-65	J-55	J-57	157.84	2.00	140.00	1.03	0.11	0.01	0.04	Open	0
60	P-66	J-55	J-58	122.14	3.00	140.00	2.56	0.12	0.00	0.03	Open	0
61	P-67	J-40	J-NEW	94.41	4.00	120.00	13.43	0.34	0.02	0.21	Open	0
62	P-67B	J-NEW	J-59	125.03	4.00	120.00	12.92	0.33	0.02	0.20	Open	0
63	P-68	J-59	J-41	102.54	4.00	120.00	2.15	0.06	0.00	0.01	Open	0
64	P-69	J-59	J-60	244.43	4.00	120.00	7.69	0.20	0.02	0.08	Open	0
65	P-7	J-06	J-07	191.26	4.00	120.00	16.92	0.43	0.06	0.32	Open	0
66	P-70	J-60	J-61	212.20	4.00	120.00	4.61	0.12	0.01	0.03	Open	0
67	P-71	J-61	J-62	146.81	4.00	120.00	2.05	0.05	0.00	0.01	Open	0
68	P-72	T-2	J-01	39.39	4.00	140.00	70.49	1.80	0.14	3.43	Open	0
69	P-8	J-07	J-08	147.90	4.00	120.00	13.84	0.35	0.03	0.22	Open	0
70	P-9	J-08	J-09	291.27	4.00	120.00	8.71	0.22	0.03	0.09	Open	0

	ID	From Node	To Node	Length (ft)	Diameter (in)	Roughness	Flow (gpm)	Velocity (ft/s)	Headloss (ft)	HL/1000 (ft/k-ft)	Status	Flow Reversal Count
71	P-NEW	J-NEW	J-56	124.10	3.00	140.00	0.51	0.02	0.00	0.00	Open	0

	CIVIL	LUMMI ISLAND SCENIC ESTATES	DATE March 2022	SHEET
WILSONENGINEERING.COM	STRUCTURAL SURVEY	WHATCOM COUNTY WASHINGTON SYSTEM CAPACITY ANALYSIS FIGURE 3	SCALE AS SHOWN JOB NUMBER 2021-032	оғ 3

Lummi Island Scenic Estates Storage Table 9/17/2022

													Standby Storage			Total	
	Equivalent	Distribution System		Maximum Daily		Maximum	Peak Hourly		Equalizing		Standby	Standby	Required (gal),		Dead	Storage	
	Residential	Leakage as ERUs	Total ERUs, N	Demand	Maximum Daily	Daily Demand	Demand	Operational	Storage	Equalizing	Storage	Storage	Max. Criteria #1	Contact Time	Storage		Total Storage
Year	Units (ERU)	(ERU)	(ERU)	(gpd/ERU)	Demand (gpd)	(gpm)	(gpm)	Storage (gal)	Required (gal)	Storage (ft)	Criteria #1	Criteria #2	or #2	Storage (gal)	(gal)	(gal)	Available (gal)
2021	218	41	259	230	59,570	41.4	112	7,050	6,814	1.45	51,800	62,160	62,160	168,254	2,350	184,467	187,993
2022	222	42	264	230	60,720	42.2	114	7,050	7,030	1.50	52,800	63,360	63,360	168,254	2,350	184,683	187,993
2023	225	43	268	230	61,640	42.8	115	7,050	7,202	1.53	53,600	64,320	64,320	168,254	2,350	184,856	187,993
2024	228	43	271	230	62,330	43.3	116	7,050	7,332	1.56	54,200	65,040	65,040	168,254	2,350	184,985	187,993
2025	231	44	275	230	63,250	43.9	117	7,050	7,504	1.60	55,000	66,000	66,000	168,254	2,350	185,157	187,993
2026	235	45	280	230	64,400	44.7	118	7,050	7,720	1.64	56,000	67,200	67,200	168,254	2,350	185,373	187,993
2027	238	45	283	230	65,090	45.2	119	7,050	7,849	1.67	56,600	67,920	67,920	168,254	2,350	185,502	187,993
2028	242	46	288	230	66,240	46.0	121	7,050	8,065	1.72	57,600	69,120	69,120	168,254	2,350	185,718	187,993
2029	245	47	292	230	67,160	46.6	122	7,050	8,237	1.75	58,400	70,080	70,080	168,254	2,350	185,891	187,993
2030	249	47	296	230	68,080	47.3	123	7,050	8,410	1.79	59,200	71,040	71,040	168,254	2,350	186,063	187,993
2031	252	48	300	230	69,000	47.9	124	7,050	8,582	1.83	60,000	72,000	72,000	168,254	2,350	186,236	187,993
2032	256	49	305	230	70,150	48.7	126	7,050	8,798	1.87	61,000	73,200	73,200	168,254	2,350	186,451	187,993
2033	260	49	309	230	71,070	49.4	127	7,050	8,970	1.91	61,800	74,160	74,160	168,254	2,350	186,624	187,993
2034	263	50	313	230	71,990	50.0	128	7,050	9,143	1.95	62,600	75,120	75,120	168,254	2,350	186,796	187,993
2035	267	51	318	230	73,140	50.8	129	7,050	9,359	1.99	63,600	76,320	76,320	168,254	2,350	187,012	187,993
2036	271	51	322	230	74,060	51.4	131	7,050	9,531	2.03	64,400	77,280	77,280	168,254	2,350	187,184	187,993
2037	275	52	327	230	75,210	52.2	132	7,050	9,747	2.07	65,400	78,480	78,480	168,254	2,350	187,400	187,993
2038	276	52	328	230	75,440	52.4	132	7,050	9,790	2.08	65,600	78,720	78,720	168,254	2,350	187,443	187,993
Max	286	54	340	230	78,200	54.3	136	7,050	10,307	2.19	68,000	81,600	81,600	168,254	2,350	187,961	187,993

Formulas & Definitions Peak Hourly

γC	<u>Demand (PHD)</u>		
	Number of ERUs (N)	С	F
	0	3	0
	51	2.5	25
	101	2	75
	251	1.8	125
	501	1.6	225
	PHD=MDD/1440[C*N+F]+18	

N=ERUS+(ERU ADD *ERUS*DSL Fraction /ERU MDD)

Source

Source	Status	Q, gpm	Q, gpd
Lake	Active	898	1,292,544
WTP Capacity	Active	67	96,480
VTP Operation (hrs/day)			
20			
Max Production		55.8	1,292,544

Distribution System Leakage & Non-Revenue Water

36%

15						
	Quantity	Volume, gal	Diameter, ft	Op. Stor., ft	Dead Stor., ft	CT stor, ft
	2	93,996	20	1.50	0.5	35.8

Maximum Capacity Based on Water Rights

Instant.=	2	cts				
	898	gpm, Capacity =	5619	ERU's		
Annual=	49	ac-ft Capacity =	364	ERU's		
Maximum Capacity Based on Water Treatment Plant						
Max Daily Rate =	80,400	gpd Capacity =	349	ERU's		

Growth Rate		Growth factor
	1.45%	1.0145
*Reflects 2020	growth rate per state of Washing	ton Office of Financial Management

Average Daily Demand (ADD) & Maximum Daily Demand (MDD)

ADD	
120	gpd per ERU *Does not include DSL
MDD	

230 gpd per ERU *Does not include DSL

Standby Storage (SB) Criteria #1: SB = 200 gallons per ERU minimum

Criteria #2: $SB = (N)(SB_i)(T_{days})$ SB; = ADD $T_{days} = 2$

Equalizing Storage (ESS) ES=(PHD-Q)(150 min) where Q is the Total Flow rate of all active sources

Lummi Island Scenic Estates Storage Table with future Water Treatment Plant capacity of 100 gpm 9/17/2022

													Standby Storage	Contact		Total	ī
	Equivalent	Distribution System		Maximum Daily		Maximum	Peak Hourly		Equalizing		Standby	Standby	Required (gal),	Time	Dead	Storage	
	Residential	Leakage as ERUs	Total ERUs, N	Demand	Maximum Daily		Demand	Operational	Storage	Equalizing	Storage	Storage	Max. Criteria #1	Storage			Total Storage
Year		(ERU)	(ERU)	(gpd/ERU)	Demand (gpd)	(gpm)	(gpm)	Storage (gal)	Required (gal)	Storage (ft)	Criteria #1	Criteria #2	or #2	(gal)	(gal)	(gal)	Available (gal)
2021	218	41	259	230	59,570	41.4	112	7,050	1,864	0.40	51,800	62,160	62,160	168,254	2,350	179,517	187,993
2022	222	42	264	230	60,720	42.2	114	7,050	2,080	0.44	52,800	63,360	63,360	168,254	2,350	179,733	187,993
2023	225	43	268	230	61,640	42.8	115	7,050	2,252	0.48	53,600	64,320	64,320	168,254	2,350	179,906	187,993
2024	228	43	271	230	62,330	43.3	116	7,050	2,382	0.51	54,200	65,040	65,040	168,254	2,350	180,035	187,993
2025	231	44	275	230	63,250	43.9	117	7,050	2,554	0.54	55,000	66,000	66,000	168,254	2,350	180,207	187,993
2026	235	45	280	230	64,400	44.7	118	7,050	2,770	0.59	56,000	67,200	67,200	168,254	2,350	180,423	187,993
2027	238	45	283	230	65,090	45.2	119	7,050	2,899	0.62	56,600	67,920	67,920	168,254	2,350	180,552	187,993
2028	242	46	288	230	66,240	46.0	121	7,050	3,115	0.66	57,600	69,120	69,120	168,254	2,350	180,768	187,993
2029	245	47	292	230	67,160	46.6	122	7,050	3,287	0.70	58,400	70,080	70,080	168,254	2,350	180,941	187,993
2030	249	47	296	230	68,080	47.3	123	7,050	3,460	0.74	59,200	71,040	71,040	168,254	2,350	181,113	187,993
2031	252	48	300	230	69,000	47.9	124	7,050	3,632	0.77	60,000	72,000	72,000	168,254	2,350	181,286	187,993
2032	256	49	305	230	70,150	48.7	126	7,050	3,848	0.82	61,000	73,200	73,200	168,254	2,350	181,501	187,993
2033	260	49	309	230	71,070	49.4	127	7,050	4,020	0.86	61,800	74,160	74,160	168,254	2,350	181,674	187,993
2034	263	50	313	230	71,990	50.0	128	7,050	4,193	0.89	62,600	75,120	75,120	168,254	2,350	181,846	187,993
2035	267	51	318	230	73,140	50.8	129	7,050	4,409	0.94	63,600	76,320	76,320	168,254	2,350	182,062	187,993
2036	271	51	322	230	74,060	51.4	131	7,050	4,581	0.97	64,400	77,280	77,280	168,254	2,350	182,234	187,993
2037	275	52	327	230	75,210	52.2	132	7,050	4,797	1.02	65,400	78,480	78,480	168,254	2,350	182,450	187,993
2038	276	52	328	230	75,440	52.4	132	7,050	4,840	1.03	65,600	78,720	78,720	168,254	2,350	182,493	187,993
Max	383	72	455	230	104,650	72.7	169	7,050	10,317	2.20	91,000	109,200	109,200	168,254	2,350	187,970	187,993

Formulas & Definitions Peak Hourly

γC	emand (PHD)		
	Number of ERUs (N)	С	F
	0	3	0
	51	2.5	25
	101	2	75
	251	1.8	125
	501	1.6	225
	PHD=MDD/1440[C*N+F]	+18	

N=ERUS+(ERU ADD *ERUS*DSL Fraction /ERU MDD)

Source

Source	Status	Q, gpm	Q, gpd
Lake	Active	898	1,292,544
WTP Capacity	Active	100	144,000
VTP Operation (hrs/day)			
20			
Max Production		83.3	1,292,544

Distribution System Leakage & Non-Revenue Water

36%

Т	a	n	ık	s

allins						
	Quantity	Volume, gal	Diameter, ft	Op. Stor., ft	Dead Stor., ft	CT stor, ft
	2	93,996	20	1.50	0.5	35.8

Maximum Capacity Based on Water Rights

Instant.=	2	cfs					
	898	gpm, Capacity =	5619	ERU's			
Annual=	49	ac-ft Capacity =	364	ERU's			
Maximum Capacity Based on Water Treatment Plant							
Max Daily Rate =	120,000	gpd Capacity =	521	ERU's			

Growth Rate		Growth factor
	1.45%	1.0145
*Reflects 2020	growth rate per state of Washing	ton Office of Financial Management

Average Daily Demand (ADD) & Maximum Daily Demand (MDD) ADD

120	gpd per ERU *Does not include DSL
MDD	

230 gpd per ERU *Does not include DSL

Standby Storage (SB) Criteria #1: SB = 200 gallons per ERU minimum

Criteria #2: $SB = (N)(SB_i)(T_{days})$ SB; = ADD $T_{days} = 2$

Equalizing Storage (ESS) ES=(PHD-Q)(150 min) where Q is the Total Flow rate of all active sources

ERING DATA

CERTIFICATE RECORD NO. 22 , PAGE NO. 10702

STATE OF WASHINGTON, COUNTY OF Whatcom

CERTIFICATE OF SURFACE WATER RIGHT

(In accordance with the provisions of Chapter 117, Laws of Washington for 1917, and amendments thereto, and the rules and regulations of the Department of Water Resources thereunder.)

This is to certify that LUMMI ISLAND SCENIC ESTATES

of ______, State of ______, State of ______, has made proof to the satisfaction of the Department of Water Resources of Washington, of a right to the use of the waters of ______ unnamed stream ______, a tributary of ______ Hale Passage _______, impoundment and point of diversion with point/or points of diversion within the _______

A description of the lands under such right to which the water right is appurtenant, and the place where such water is put to beneficial use, is as follows:

Within the plats of Lummi Island Scenic Estates, Divisions No. 1 through 10, within Sections 14, 23 and 24, T. 37 N., R. 1 E.W.M.

Cert. Change place of Use # 1088

The right to the use of the water aforesaid hereby confirmed is restricted to the lands or place of use herein described, except as provided in Sections 6 and 7, Chapter 122, Laws of 1929.

This certificate of surface water right is specifically subject to relinquishment for nonuse of water as provided in Section 18, Chapter 233, Laws of 1967.

WITNESS the seal and signature of the Assistant Director, Division of Water Management, Department of Water Resources affixed this 2nd day of June , 19.69

Assistant Director

Assistant Director Division of Water Management Department of Water Resources

GERTIFICATE OF CHANGE OF PLACE OF USE OF WATER

In accordance with the provisions of Chapter 117. Laws of Washington for 1917, and amendments thereto and rules thereunder of the State Director of Water Resources.

(and

THIS IS TO GERTIFY That Lummi Island Scenic Estates of Scattle, Washington, has complied with all of the requirements of the Revised Code of Washington 90.03.380 and is hereby granted the right to change the place of use of 2.0 cubic foot per second, 49 acro-feet per year, of waters of an unnamed stream, tributary of Malo Passage, as granted under Surface Mater Cortificate No. 10702.

That such vator has been used for the purpose of commusicy demostic supply on the following described lands:

The plats of Lurni Island Scenic Estates. Bivisions 1 through 10, within Soctions 14. 23 and 24. Township 57 North. Range 1 Last W.M.

That the place of use of sold waters has been changed to the following described lands:

The plats of Lummi Island Scenic Estates, Divisions 1, 2, 3, 4, 5, 6, 7, 9, and 10; AND the unplatted part of SubMath of Sec. 23; AND the unplatted part of S 3/4 NAME4 of Sec. 23; ALL within Secs. 14, 23 and 24, T. S7 H., R. 1 E.W.M., Whatcom County, Washington.

WITNESS THE SEAL and SIGNATURE of the Assistant Sirector of the Division of Vator Management, Department of Wator Resources, State of Washington, affixed this 26th day of January, 1978.

yon of Freder

GLEN H. PIEDLER, Asst. Director Division of Nator Management

RECORDED: Volumo 3, page 1083 Records of Change of Place of Uso of Bator.

fog:

Water Right Self-Assessment Form for Water System Plan

Mouse-over any link for more information. Click on any link for more detailed instructions.

Water Right Permit, Certificate, or Claim # *If water right is interruptible, identify	WFI Source # If a source has multiple water rights, list each water right on	Existing Water Rights Qi= Instantaneous Flow Rate Allowed (GPM or CFS) Qa= Annual Volume Allowed (Acre-Feet/Year) This includes wholesale water sold			Current Source Production – Most RecentCalendar YearQi = Max Instantaneous Flow Rate Withdrawn (GPM or CFS)Qa = Annual Volume Withdrawn (Acre-Feet/Year)This includes wholesale water sold			<u>10-Year Forecasted Source Production</u> (determined from WSP) This includes wholesale water sold				20-Year Forecasted Source Production (determined from WSP) This includes wholesale water sold					
limitation in yellow	separate line	Primary	Non-Additive	Primary	<u>Non-</u>	<u>Total Qi</u>	<u>Current</u>	<u>Total Qa</u>	<u>Current</u>	<u>Total Qi</u>	<u>10-Year</u>	Total Qa	<u>10-Year</u>	<u>Total Qi</u>	<u>20-Year</u>	Total Qa	<u>20-Year</u>
section below		<u>Qi</u>	Qi	<u>Qa</u>	Additive Qa	Maximum	Excess or	Maximum	Excess or	Maximum	Forecasted	Maximum	Forecasted	Maximum	Forecasted	Maximum	Forecasted
		Maximum	Maximum	Maximum	Maximum	Instantaneous	(Deficiency)	Annual	(Deficiency)	Instantaneous	Excess or	Annual	Excess or	Instantaneous	Excess or	Annual	Excess or
		Rate Allowed	Rate	Volume	Volume	Flow Rate	<u>Qi</u>	Volume	<u>Qa</u>	Flow Rate	(Deficiency)	Volume	(Deficiency)	Flow Rate	(Deficiency)	Volume	(Deficiency)
			Allowed	Allowed	Allowed	Withdrawn		Withdrawn		in 10 Years	Qi	in 10 Years	<u>Qa</u>	in 20 Years	<u>Qi</u>	in 20 Years	<u>Qa</u>
R1-*15782CCWRIS Certificate 10702B R1*15782 C C	S01	2 cfs				0.149 cfs	1.851 cfs			0.223 cfs	1.777 cfs			0.223 cfs	1.777 cfs		
S1-CV3-P1088																	
	TOTALS =																
Column Identifiers for	r Calculations:	A		В		С	=A-C	D	=B-D	E	= A-E	F	=B-F	G	=A-G	Н	=B-H

PENDING WATER RIGHT APPLICATIONS: Identify any water right applications that have been submitted to Ecology.										
Application	plication New or Change Data Calmitted Quantities Requested									
Number	Application?	Date Submitted	Primary Qi	Non-Additive Qi	Primary Qa	Non-Additive Qa				

Name of Wholesaling System Providing Water	Quantities In Con		Expiration Date of	Currently Purchased Current quantity purchased through intertie				10-Year Forecasted Purchase Forecasted quantity purchased through intertie				20-Year Forecasted Purchase Forecasted quantity purchased through intertie			
	Maximum Qi Instantaneous Flow Rate	<u>Maximum</u> <u>Qa</u> Annual Volume	Contract	Maximum Qi Instantaneous Flow Rate	<u>Current</u> <u>Excess or</u> (Deficiency) Oi	Maximum Qa Annual Volume	<u>Current</u> <u>Excess or</u> (Deficiency) Qa	Maximum Qi 10-Year Forecast	Future Excess or (Deficiency) Oi	Maximum Qa 10-Year Forecast	<u>Future</u> <u>Excess or</u> (Deficiency) Oa	Maximum Qi 20-Year Forecast	<u>Future</u> <u>Excess or</u> (Deficiency) Oi	Maximum Qa 20-Year Forecast	<u>Future</u> <u>Excess or</u> (Deficiency) <u>Qa</u>
1 2 3							<u></u>		<u></u>		<u> </u>				<u></u>
TOTALS = Column Identifiers for Calcula	itions: A	В		C	=A-C	D	=B-D	E	=А-Е	F	=B-F	G	=A-G	Н	=B-H

INTERRUPTIBLE WATER RIGHTS: Identify limitations on any water rights listed above that are interruptible.

Water Right #	Conditions of Interruption	Time Period of Interruption
1		
2		
3		

ADDITIONAL COMMENTS:

Note that the water right allows for the storage of 49 acre-feet per year, but does not specify an allowable annual use. See interpretation in DOH-approved "LUMMI ISLAND SCENIC ESTATES WATER SYSTEM ANALYSIS" by Wilson Engineering dated 6-23-2014, page 5.